Viva Expert
Viva Expert

Non-knowledge workers can be identified by checking whether their average person-level collaboration hours are below a certain threshold. The default threshold is 5 collaboration hours, as adopted here in the wpa R library ( 

The below code presents an example function of how this can be done in Python, with an option to either return a diagnostic message or a set of `PersonId`s who are identified as knowledge workers:


import pandas as pd

# path to person query
sq_data = pd.read_csv('../data/demo spq.csv')

# function for identifying non-knowledge workers
# data: pandas dataframe
# metric: string containing name of metric
# threshold: numeric value specifying threshold value
# return_value: 'text' or 'kw_id' to control what outputs to return
def identify_nkw(data, metric, threshold, return_value):
    output = (data.groupby(by = ['PersonId'])
    nkw_tb = output[output[metric] < threshold]
    if (return_value == 'text'):
        # Print diagnostic message
        print(nkw_tb.shape[0], 'non-knowledge workers identified with an average collaboration hours below', threshold, '.')
    elif (return_value == 'kw_id'):
        # Knowledge-worker ID
        kw_tb = output[output[metric] >= threshold] = 'PersonId'
        kw_tb = kw_tb[['PersonId']]
        return kw_tb

        print('invalid input to `return_value`')

# Run functions with different return iterations
identify_nkw(data = sq_data, metric = 'Collaboration_hours', threshold = 15, return_value = 'text')
identify_nkw(data = sq_data, metric = 'Collaboration_hours', threshold = 15, return_value = 'kw_id')        



Recommendations for you